logo new
Login as: Member Non-Member

Past Webinars Webinars on YouTube

For questions on past webinars, please find the speaker’s contact information within the presentation, or feel free to contact Kara Miller (kmiller@sws.org), who can help connect you with the webinar speaker. SWS members have full access to all past webinar recordings. To access, please log in as a member. 

Certificates of completion, worth one hour of webinar participation, are available upon request; please contact Kara Miller at kmiller@sws.org, if interested.

Webinars on YouTube

The SWS Webinar Committee is excited to announce that our free webinar recordings are now available on the SWS YouTube channel! Now, SWS supporters around the world can watch the webinars with subtitles in their native language.

Watch webinars with subtitles

To view the webinars with subtitles, click the “CC” button in the bottom, right-hand corner of the video. You can change the language of the subtitles by clicking on the settings button in the bottom, right-hand corner and going to subtitles/CC > auto-translate > and choosing the language of your choice.

September 2017: Subtropical wetlands: comparing primary producer diversity and dominance and addressing restoration challenges

Webinar Overview: 

In this webinar, I will present highlights of my recently published research on patterns and controls of algal richness in the Okavango Delta (Botswana) and the Florida Everglades (U.S.A.), and of algal dominance in the Everglades. I will also introduce some preliminary comparisons of restoration approaches in other subtropical wetlands. Globally, anthropogenic activities are heavily impacting subtropical wetlands, for example via hydrological and nutrient changes. In these ecosystems, hydrological variability and nutrient availability are key factors determining changes in the community structure of key aquatic primary producers, such as microalgae. Highly diverse communities may use limiting nutrients more efficiently than less diverse ones, while, in the latter, a few algal species may dominate aquatic primary production. In turn, algal diversity and/or dominance may enhance wetland resilience via food web dynamics; thus we need to address the fundamental question: “How do diversity, enhanced by numerous rare species, and/or dominance by a few well adapted species vary with hydrological and nutrient changes in subtropical wetlands?” To predict how primary producer community structure will change with scenarios of oligotrophication / eutrophication, drying / wetting, and water flow diversion / restoration, we need more comparative studies with standardized approaches, and international and interdisciplinary collaborations. As key challenges await these aquatic systems facing present and/or predicted intense exploitation by humans and global environmental change, how can impacted wetlands be restored to an ecologically sustainable functioning state via effective science, monitoring, management, conservation, and policy?

Presenters Bio

Dr. Luca Marazzi holds an MSc in Environmental Sciences from the University of Milano Bicocca (Italy) and a Ph.D. in Freshwater Ecology from University College London (UK). Since January 2015, he has been working as a postdoctoral associate in Dr. Evelyn Gaiser’s laboratory at Florida International University, where he is investigating how and why diversity, abundance and biomass of freshwater microalgae change across space, time and environmental gradients in subtropical wetlands such as the Everglades and the Okavango Delta. His previous studies and research, teaching and consultancy work in Europe focused on topics such as bird migration, air quality assessments, climate change scenarios, biodiversity and ecosystem services, and sustainability. He is interested in further developing his comparative studies to encompass the analysis of wetland restoration and conservation practices in collaboration with other wetland experts.

Watch recording 

Download presentation 

Click here to enjoy SWS member benefits

August 2017: Robust Interpolation of Water Levels and Ecological Conditions at Unmonitored Wetlands using Regression-kriging

Webinar Overview: 

Tampa Bay Water, Florida's largest wholesale water supplier, is assessing environmental recovery of wetlands and lakes in the Northern Tampa Bay area in response to regional groundwater production cut-backs. Groundwater production cut-backs were initiated in 2003 to improve regional aquifer levels and wetland hydrology and as part of a larger effort to develop diverse, environmentally-sustainable supplies that could accommodate future growth. Over 400 monitored wetlands and lakes are being assessed in comparison to hydrologic standards based on regulatory minimum level criteria. Unfortunately, water level data are unavailable for 684 unmonitored sites (7,900 acres) located in the vicinity of groundwater wellfields, causing uncertainty regarding the extent to which these areas have recovered. We implemented a robust regression-kriging (RK) interpolation approach using R to provide estimates of water level and ecological recovery at each unmonitored site. Best subsets multiple linear regression with the Bayesian Information Criterion was used to select the most probable, but parsimonious, subset of variables for prediction of median water levels relative to indicators of historic inundation for the period 2008-2014. Residuals showed spatial autocorrelation, so they were kriged to generate a combined RK model. Cross-validated residuals from the RK model ranged from -0.66 feet to +0.40 feet for 80% of the locations. The RK predictions were compared to wetland-type specific thresholds to yield recovery status for each unmonitored site. Similar methods were applied to a field-assessed metric of ecological condition available from over 800 locations. The interpolated estimates of both water levels and ecological conditions are being used to screen out recovered sites and prioritize others for further study and potential mitigation.

Presenters Bio

Dan Schmutz is the Chief Environmental Scientist for Greenman-Pedersen, Inc. (GPI), a 1,200-person multidisciplinary consulting firm. He holds a Master’s degree in Zoology from the University of South Florida. He has over 20 years of professional experience focused on the development and application of ecological and hydrological field assessments, GIS analyses, and appropriate statistical techniques for addressing questions of interest to water supply managers.

Members please log in to watch recording 

Click here to enjoy SWS member benefits

July 2017: Types of constructed wetlands for wastewater treatment

Webinar Overview: 

Constructed wetlands have been used for wastewater treatment since the 1960’s. The first installations were put in operation in Germany; however, at present this technology is used across the globe. Constructed wetlands can be classified according to a) presence or absence of water on the surface (surface and subsurface flow), b) flow direction (horizontal, vertical) and c) according to the type of vegetation used. Constructed wetlands can be used to treat municipal, industrial and agricultural wastewaters, as well as for treatment of storm water runoff from urban areas, agriculture, roads and highways, golf courses, nurseries and for landfill leachate and mine drainage.

Presenters Bio

Jan Vymazal graduated from the University of Chemistry and Technology Prague where he also received his Ph.D. degree. Currently, he is a professor in the Environmental Sciences department at the Czech University of Life Sciences Prague. Jan is also an adjunct associate professor at Duke University’s Wetlands Center in Durham, North Carolina. His major research is focused on wastewater treatment in constructed wetlands and nutrient cycling in natural wetlands. He has authored more than 100 research papers in peer-reviewed journals, edited ten books and authored two monographs. Jan is a member of editorial boards of several international journals and he is the Editor in Chief of the journal Ecological Engineering. From 2009 to 2012, he was a chair of the IWA Specialized Group on Wetland System for Water Pollution Control and he is one of the past presidents of the SWS Europe Chapter.

Members please log in to watch recording 

Click here to enjoy SWS member benefits

May 2017: Using sediment enhancement to build tidal marsh resiliency on Blackwater National Wildlife Refuge, Maryland, USA

Webinar Overview: 

Located in Maryland, USA, Blackwater National Wildlife Refuge is part of the largest area of tidal marsh within the Chesapeake Bay watershed, and is of regional ecological significance for its wetlands and for the wildlife populations it supports. However, over 5,000 acres of tidal marsh have converted to open water on the refuge since 1938. The mechanisms contributing to Blackwater’s tidal marsh loss are generally attributed to a combination of sea level rise, subsidence, and herbivory by nutria.

In many areas on the refuge the elevation of the marsh surface is low relative to local tides, leading to excessive inundation. More than 80% of elevation points recently surveyed on Blackwater NWR were found to be well below the elevations needed for optimum plant growth for the refuge’s tide range (Kirwan and Guntenspergen 2012). When marsh vegetation is at an elevation below that which is optimal for plant growth, the rising sea level will further inhibit root zone growth and lead to additional marsh loss. On Blackwater NWR, vertical marsh development is particularly dependent on organic accretion driven by below-ground biomass production (Cahoon et al. 2010).

In December 2016, 26,000 cubic yards of sediment was pumped in a thin-layer application over approximately 40 acres of tidal marsh on the refuge. The purpose of this project is to raise the elevation of the existing marsh platform. The sediment enhancement will offer a twofold ecological benefit to marsh resilience: 1) The longevity of the marsh receiving thin layer sediment application will be extended by virtue of the raised surface elevation in relation to the tidal regime; and 2) Root zone production, and consequently rates of vertical accretion, should increase. Root zone production is the main driver of vertical accretion rates in the Blackwater River system (Cahoon and Guntnerspergen 2010). Building the marsh platform to an elevation that maximizes plant productivity will take full advantage of the capacity of the marsh to continue to build elevation (Kirwan and Guntenspergen 2012).

Presenters Bio

Matt Whitbeck is the supervisory wildlife biologist at Chesapeake Marshlands National Wildlife Refuge Complex in Maryland. Matt has over 19 years’ experience working in tidal marshes and natural resource management issues on National Wildlife Refuges. He has an M.S. in Wildlife and Fisheries Sciences from Texas A&M University.

Members please log in to watch recording 

Click here to enjoy SWS member benefits

April 2017: The Clean Water Rule: Real Facts

Webinar Overview: 

The US Environmental Protection Agency (USEPA) and the US Army Corps of Engineers (USACOE) published the “Clean Water Rule: Definition of “Waters of the United States” in 2015 to provide clarification on which US water bodies and wetlands are “Waters of the United States” (WOTUS) and thus, regulated jointly by the USACOE and USEPA under Section 404 of the Clean Water Act. The Clean Water Rule developed from several iterations of clarification memoranda that followed United States v. Riverside Bayview (1985), Solid Waste Agency of Northern Cook County (SWANCC) v. U.S. Army Corps of Engineers (2001),  and most importantly, Rapanos et al. v. United States (2006). The rule contains eight categories of water bodies and wetlands and extensive definitions and exemptions to clarify which water bodies and wetlands are WOTUS and which are not. The exemption list formalizes in one source exemptions from various US Federal laws and policies. In this webinar, I will discuss the eight categories of WOTUS, their scientific bases for inclusion, the specific conditions required of each and the exemptions and common misinterpretations. The fate of the Clean Water Rule has been in US national news since January. The Rule is currently stayed nationwide by the US Sixth Circuit Court of Appeals.

Read the Amici Curiae Brief

Presenters Bio

Richard Chinn grew up in a non-science household; but early on, developed a love for sciences, pursuing a Bachelor's of Science degree at the University of Florida and a Master's of Science degree at the University of South Florida, with a major in zoology for both degrees. He began working for a number of state and regional governmental agencies in 1984 and then transitioned to the consulting world in 1992. Since 1997, he has provided environmental and wetland training as Richard Chinn Environmental Training. Richard has spent much of the last 20 years studying wetland regulations and has been avidly studying the WOTUS Rule nearly every work day since it was released. He has explained this rule to 600+ wetland scientists in 30+ courses over the last two years. Richard is a lifetime member of SWS and you may have recently seen his name on the SWS 2017 ballot as a candidate for President-Elect. Regardless of the outcome of the election, you can say hello to Richard at the Annual Meeting in Puerto Rico and learn “A Quick, Inexpensive, Easy Field Protocol to Determine Anoxia in Hydric Soils of Various Wetlands” from his talk. In his leisure time, Richard recently completed a novel, "The Enemy of My Enemy," a fictionalized story of the Doolittle Raid of World War II.

Members please log in to watch recording 

Click here to enjoy SWS member benefits

March 2017: The Challenges and Successes of Incorporating Coastal Wetlands into the U.S. Inventory of GHG Emissions and Sinks

Webinar Overview: 

Land use accounts for about a quarter of anthropogenic greenhouse gas (GHG) emissions, globally, and offers significant mitigation potential. There are linkages with adaptation and food security. Inclusion of land use is a topic of interest in the development of international climate agreements and is essential to meet the goal of avoiding dangerous tipping points of climate change.

It is estimated that, globally, drainage and excavation of mangrove, salt marsh and seagrass wetland soils release 450 million tons of CO2, annually (range 150-1005 MtCO2/yr). This is an emission roughly equivalent to that of California, but is an incomplete estimate as it does not recognize all human impacts to coastal wetlands (e.g. increased CH4 emissions from impaired tidal drainage and release of CO2 with anthropogenically driven wetland erosion).

The U.S. Inventory of GHG Emissions and Sinks (Inventory) chapter on land use, “Land Use Change and Forestry (LULUCF),” reports carbon stock change and emissions of CH4 and N2O, with activities on and conversion between forest lands, croplands, grasslands, settlement and wetlands. With the release of the 2013 IPCC Supplement to the 2006 IPCC Guidelines for National GHG Inventories: Wetlands (Wetlands Supplement), the United States is seeking to include emissions and removals with management activities on coastal wetlands and is responding to a request by the United Nations Framework Convention on Climate Change (UNFCCC) for Parties to report back in March 2017 on experience in applying the Wetlands Supplement.

To support the EPA, NOAA and Restore America’s Estuaries (RAE) have formed an interagency and science community, Coastal Wetland Carbon Working Group (CWCWG). The task of the CWCWG is to conduct an initial IPCC Tier 1 to Tier 2 baseline assessment of GHG emissions and removals associated with coastal wetlands using the procedures described in the recently released IPCC Wetlands Supplement. These initial efforts have assisted EPA with incorporating some preliminary results into the 2016 submission of the U.S. national GHG inventory as an information item, with the goal of full reporting in the 2017 submission. We will report on an update of current activities in support of that goal.

Presenters Bio

Steve Crooks, Ph.D., is a founder and Principal at Silvestrum Climate Associates, working on integrated climate adaptation and mitigation in coastal areas. He is also a wetland restoration practitioner and a founder of the International Blue Carbon Initiative. Steve was a national delegate to the Paris Climate Negotiations and a lead author of the IPCC Wetland Supplement, providing guidance on inclusion of coastal wetlands in national GHG Inventories.

Dr. Tiffany Troxler directs the Sea Level Solutions Center at Florida International University, a state university center that focuses on advancing knowledge, decision making and actions toward mitigating the causes and adapting to the effects of sea-level rise. She is a research scientist with expertise in coastal and wetland ecosystem science. Some of her projects include collaborative research that examines the effects of saltwater inundation on Everglades coastal wetlands, monitoring management actions associated with Everglades restoration and advancing interdisciplinary urban solutions to sea-level rise.  Troxler is author of over 30 peer-reviewed articles and book chapters and was co-editor and contributing author on two IPCC methodological reports published in 2014 that guide greenhouse gas emissions estimation associated with land use and land-use change in wetlands.

Watch recording

Download presentation

Click here to enjoy SWS member benefits

February 2017: Liquid Assets: Building and Sustaining a State-Based Aquatic Ecological Restoration Program

Webinar Overview: 

Learn how Massachusetts created the first-in-the-nation, state-based, aquatic, ecological restoration division. With a focus on aquatic ecosystems, DER actively manages over 60 physical restoration projects. Restoration techniques include dam removal, culvert replacement, fill removal, urban river revitalization, water conservation and stream daylighting. Since 2012, DER has leveraged almost $20 million in non-state funds and nearly a $25 million in volunteer assistance. DER and partners have removed 43 dams, providing hundreds of miles of river continuity, and restored over 1,500 acres of coastal wetlands.

This webinar will highlight project successes, including the largest Atlantic white cedar swamp restoration in the Northeast (Eel River, Plymouth, MA) and other complex river and wetland restoration projects.

DER provides a template in how to create, tailor and promote a government-sponsored, ecological restoration program. A description of the tools that have been most effective in attracting and leveraging limited, state funding will also be discussed.

Presenter Bio

Tim Purinton oversees a nationally award-winning division that coordinates river, wetland and stream flow restoration projects, across the state. Tim was awarded a Governor Bradford Fellowship for Excellence in Public Administration, which allowed him to receive a MPA from Harvard University’s Kennedy School of Government.

Members please log in to watch recording

Click here to enjoy SWS member benefits

January 2017: Restoring the River Flows

Webinar Overview:

River flows have been recognized as the key driver of freshwater biodiversity by many ecologists.  However, the understanding of such an important driver by the public, the industry and policy-makers is very limited.  This presentation explains the importance of river flows and the key challenges, and shares WWF’s works in maintaining and restoring river flows, where possible, through tactics including: understanding and assessing environmental flows, restoring the river connectivity, managing and re-operating the existing infrastructures, promoting integrated basin planning and mainstreaming environmental flows into national and global policies.

Presenter Bio 

Dr. Li was the Director of WWF Global Freshwater Program from 2008-2016 and led WWF’s works on freshwater conservation in many of the world’s large rivers, including the Amazon, Rio Grande and Rio Conchos, Amur, Yangtze, Mekong, Ganges, Indus, Danube, Balkan rivers and Zambezi.  He has been working on water and river basin management in WWF since 2002 and was the leader of WWF’s work on basin management in China and restoration in the Central Yangtze.

Members please log in to watch recording

Click here to enjoy SWS member benefits

December 2016: Life in the Mud: Relevance to Food Security, Climate Change, and Water Quality

Webinar Overview:

Freshwater wetlands, coastal wetlands, benthic sediments of lakes, rivers, streams, marine sediments and paddy soils, all have one thing in common: mud. Many biological communities use mud as their habitat to support their livelihood. These include microbial communities, invertebrates and plant communities. Typically, mud in these ecosystems is present under water and very little or no oxygen is present in the mud to support their respiration. In this presentation, I will present key of roles of little players, i.e., microbial communities playing large roles in regulating various ecosystem processes that may have a direct link to global food security, water quality and climate change. For example, for the role of mud in food security, I will present global examples of how rice production is mediated by biogeochemical processes, regulated by various microbial communities housed in paddy soils. Similarly, I will provide various examples of the importance of mud in various ecosystems, as related to water quality, carbon sequestration and greenhouse gas emissions.

Presenter Bio 

K. Ramesh Reddy is a graduate research professor of biogeochemistry and the chairman of the Soil and Water Sciences department at the University of Florida. He conducts research in the areas of coupled biogeochemical cycling of nutrients, as related to surface water quality, restoration wetlands and aquatic systems, ecological indicators, carbon sequestration and greenhouse gas emissions. Reddy has served on numerous advisory committees at state, national and international levels to assist agencies in developing science-based policy. Reddy has supervised 60 doctoral and master thesis committees and has served on an additional 130 graduate student committees. Publications related to Reddy’s research can be viewed here: http://soils.ifas.ufl.edu/wetlands. His select awards and honors include: the 1988 Fellow Award from the Soil Science Society of America, the 1988 Fellow Award from the American Society of Agronomy; the 2001 Soil Science Applied Research Award from the Soil Science Society of America; the 2002 Environmental Quality Research Award from the American Society of Agronomy; the 2002 Fellow Award from the American Association for the Advancement of Science; the 2012 Lifetime Achievement Award from INTECOL; the 2016 National Wetlands Award for research from the Environmental Law Institute and 2016 SWS Lifetime Achievement Award.

Watch the recording here

Click here to enjoy SWS member benefits

November 2016: Reclaiming, Using and Protecting Wetlands: the Dutch Approach

Webinar Overview:

The Netherlands is the common delta of 3 major rivers. Originally a vast expanse of salt marshes, floodplains, swamps and large bogs, the Dutch started to live there on dwelling mounds 2000 years ago. From the 11th century, farmers and monasteries joined forces to build dikes, culminating in large reclamations funded by merchants and noblemen in the 17th century.  Only in the 20th century, wetland protection became an issue, while new wetland areas are being created since 25 years. This story is about the vast original wetland wilderness, the ways the Dutch reshaped it into their minutely controlled country, about major floods and continuous innovations in ways to control or make use of wetlands. It ends with the current status, which includes a movie trailer on the Oostvaardersplassen,  a vast wetland wilderness of only 40 years old.

Presenter Bio 

Jos Verhoeven is professor emeritus of landscape ecology at the Department of Biology of Utrecht University, The Netherlands. He is also a Research Associate of the Smithsonian Institution in Washington, USA. He is the President of the Society of Wetland Scientist’s Europe chapter and a member of the executive board of INTECOL, the International Association of Ecology. Until 2015, he was the chairman of the Center for Wetland Ecology, a consortium of 20 research groups in the Netherlands and Flanders, and acted as the coordinator of the Hotspot “Shallow waters and peat meadow areas” of the Dutch national research program Knowledge for Climate. His research focuses on the biogeochemistry of wetlands at the ecosystem level, primarily the interactions between the biogeochemical cycles of carbon, nitrogen and phosphorus and the relation between biodiversity and ecosystem functioning. His studies involve nutrient-related studies of fens, bogs, river floodplains, freshwater tidal wetlands, lake marginal wetlands and mangroves, as well as the impacts of nutrient loading of wetlands on water quality and on greenhouse gas emissions, in the context to climate change and land use change.

Please click here to watch the trailer from New Wilderness.

 

Members please log in to watch recording

Click here to enjoy SWS member benefits

October 2016: Will Reintroduction of Fire along Coastal Gradients Promote Lateral Migration of Marsh and Enhance Biodiversity?

Presenter Bio 

Julia Cherry received her B.S. in Biology from Rhodes College in Memphis, Tennessee in 1999 and her Ph.D. in Biological Sciences at the University of Alabama in 2005. After completing a post-doctoral appointment at the USGS National Wetlands Research Center (NWRC) in Lafayette, Louisiana, Julia returned to the University of Alabama in 2006 as an Assistant Professor in the Departments of Biological Sciences and New College. She has since been promoted to the rank of Associate Professor. Currently, her research is aimed at understanding the effects of climate change and other environmental impacts on wetlands of the southeastern United States. She serves as the SWS Treasurer and the Ways and Means Committee Co-Chair.

Loretta Battaglia is a community ecologist with over 25 years of experience working in wetlands. She received her B.S. in Zoology in 1988 and her M.S. in Biology in 1991 from the University of Louisiana at Monroe. She received her Ph.D. in Ecology from the University of Georgia in 1998. Following graduation, Loretta entered a post-doctoral position at Louisiana State University. In 2003, she accepted a tenure-track Assistant Professor position in the Department of Plant Biology at Southern Illinois University (SIU) where she was promoted to Associate Professor in 2009. She is interested in the dynamics of wetland plant communities and the ecological processes that link them with the surrounding landscape. Specifically, research in her lab focuses on the effects of climate change and exotic species invasions on community structure and function, as well as development of restoration targets for coastal wetlands undergoing rapid climate change. Loretta’s current projects include research on assisted migration and prescribed burning as management tools in coastal ecosystems threatened by climate change. She serves as the SWS Secretary General and the Membership Committee Chair.

 

Members please log in to watch recording

Click here to enjoy SWS member benefits

September 2016: Highlights and Overview of the 2011 National Wetland Condition Assessment (NWCA) and Upcoming 2016 NWCA

Webinar Overview: 

Highlights and Overview of the 2011 National Wetland Condition Assessment (NWCA) and Upcoming 2016 NWCA presented a summary of the methods and findings of the first national assessment of wetland condition and a preview of the 2016 assessment. The NWCA is part of U.S. Environmental Protection Agency’s (USEPA) National Aquatic Resource Surveys, and is conducted every five years by the USEPA and its federal and state partners. The survey design allows extrapolation of results to national and regional scales, while chemical, physical, and biological measures are used to measure wetland condition and stressor extent. The results of the 2011 assessment and all NARS surveys are presented in a report available to the public. The webinar was presented by Mary E. Kentula, who is a wetland ecologist with the USEPA’s National Health and Environmental Effects Laboratory’s Western Ecology Division and the technical lead for the NWCA.

Presenter Bio

Dr. Mary E. Kentula is a Wetlands Ecologist with the U.S. Environmental Protection Agency’s (USEPA) National Health and Environmental Effects Laboratory, Western Ecology Division in Corvallis, Oregon. From 1992 through 1996 she served as the national program leader for the Agency’s Wetland Research Program and was responsible for directing and coordinating studies of freshwater wetlands across the nation. Mary’s research within the Program focused on the use of restoration techniques in wetland management. Among Mary’s publications from that work is the book, Wetland Creation and Restoration: The Status of the Science, which she co-edited with Dr. Jon Kusler in 1990. Mary’s current work supports the EPA’s National Aquatic Resource Surveys through the development of approaches to monitor and report on the ecological condition of wetlands. Among her awards, the Society of Wetland Scientists recognized Dr. Kentula with the Merit Award in 2007 for her work in assessing wetlands at the watershed scale. This was followed by the successful completion of the 2011 National Wetland Condition Assessment (NWCA). Mary’s research team led the production of the field operations manual used in the assessment, played a major role in data analysis and reporting, contributed to the final report and wrote the technical report. The technical report details the analysis used in the NWCA. The team is currently providing technical support for the 2016 assessment.

 

Members please log in to watch recording

Click here to enjoy SWS member benefits

August 2016: Status and Trends of Wetland Restoration

Webinar Overview: 

The practice of wetland restoration and our understanding of wetland science has evolved significantly over the last 50 years. However, numerous studies have documented the shortcomings of wetland mitigation and voluntary restoration projects to achieve stated goals. In 2013, the Association of State Wetland Managers began to identify some barriers to wetland restoration and established a Work Group of 25 restoration experts, including practitioners, academics, consultants, regulators, and policy makers, to further identify and analyze these barriers and develop recommendations to address them. There is general agreement among restoration professionals that the science exists to achieve restoration goals and that wetland restoration performance will improve if certain barriers are addressed. Climate change has heightened the interest in using wetland restoration as a tool for mitigation and adaptation and thus the goals and designs for wetland restoration have become more complex and diverse. Although there is no "cookbook approach" for wetland restoration, there are concrete steps we can take to improve restoration outcomes. This presentation will discuss the findings of the Association of State Wetland Managers and its Wetland Restoration Work Group including recommendations from its draft white paper, "Wetland Restoration: Contemporary Issues & Lessons Learned."

Presenter Bio

Marla J. Stelk is a Policy Analyst at the Association of State Wetland Managers. She has been ASWM’s project leader for two U.S. EPA wetland restoration grants and coordinates a wetland restoration workgroup. Marla coordinates and moderates the Wetland Mapping Consortium and the Natural Floodplain Functions Alliance webinar series. She is also the Association’s Communications Team leader and the Editor of Wetland Breaking News. Marla comes to ASWM with a strong professional background in environmental issues, stakeholder engagement, facilitation, special events and communications. She has been focused on climate change issues for 20 years, beginning in 1997. At ASWM she has continued her work on climate change issues and is a member of the Advisory Committee on the Water Information Water Resources Adaptation to Climate Change Workgroup. Marla earned her MA in Community Planning and Development with a focus on Land Use and the Environment at the Muskie School of Public Service and her BA in Environmental Issues from Colorado College.

Jeanne Christie has been with ASWM since 1999 and Executive Director since 2001. From 1995 to 1999 she was a Resource Conservationist with the USDA Natural Resources Conservation Service, Wetlands and Watersheds Division where she was national program leader for the Wildlife Habitat Incentives Program. She worked for the U.S. Environmental Protection Agency, Wetlands Division (1988-1995) moving from the staff level to Section Chief and Acting Branch Chief. As an environmental planner at the Wisconsin Department of Natural Resources (1985-1988) responsibilities included the Green Bay Remedial Action Plan and the 208 Watershed Plan for Southeastern Wisconsin. She has a B.A. in Political Science and a B.S. in Environmental Science, both from the University of Maine at Presque Isle. Jeanne is a 2007 winner of the National Wetlands Award for Education and Outreach.

 

Members please log in to watch recording

Click here to enjoy SWS member benefits

July 2016: Lessons Learned from Large Scale Wetland Restoration: Case Studies from around the U.S.

Webinar Overview:

Jeff Trulick with the U.S. Army Corps of Engineers will present lessons learned from the many decades of Corps planning, design and implementation of major wetland restoration projects.

Presenter Bio

New Mid-Atlantic President, Jeff Trulick, is with the U.S. Army Corps of Engineers. Jeff works in the headquarters office conducting planning, environmental and policy reviews on primarily Corps feasibility studies across their various mission areas, which includes Aquatic Ecosystem Restoration. Jeff will present lessons learned from the many decades of Corps planning, design and implementation of major wetland restoration projects.

 

Members please log in to watch recording

Click here to enjoy SWS member benefits

May 2016: Structural and Functional Responses of Coastal Wetlands to Changes in Mangrove Cover

Webinar Overview:  

Global changes are causing broad-scale shifts in vegetation communities worldwide, including in coastal wetlands where mangrove stands are increasing their range and displacing salt marshes. Coastal wetlands provide valuable ecosystem services including: habitat and food web support, buffering coastal areas from storms and sea level rise and filtering water. Coastal wetlands also store more carbon per area in their soils than other ecosystems, making them globally important “blue carbon” sinks. Changes in carbon storage rates based on vegetation shifts may represent important feedbacks to climate change and since changes in soil carbon storage influence soil elevation, may alter vulnerability of coastal wetlands and the services they provide. Changes between functionally distinct woody mangroves and marsh vegetation are likely to alter ecosystem function, and changes in proportion of each vegetation type may have non-linear effects. Yet, we lack an adequate understanding of how changing foundation species identity and density will affect coastal ecosystem structure and function.

Mangrove range and cover fluctuate due to expansion during periods with warm winters and loss from severe freezes and anthropogenic impacts. In Texas, black mangrove (Avicennia germinans) cover increased by 74% between 1990 and 2010. With increasing winter temperatures, black mangroves are predicted to replace salt marshes throughout much of the Gulf Coast within this century. To understand likely functional implications of vegetation change, a common technique is to compare structural and functional differences among existing mangrove, salt marsh and mixed vegetation communities, but this method runs the risk of confounding the effects of the vegetation community with underlying abiotic conditions. Thus, we created a field experiment in which mangrove density was manipulated to represent 0-100% mangrove cover in ten 24 x 42 m plots in Port Aransas, Texas (just down the road from SWS 2016 Corpus Christi!). We tested how plant species identity and density alter: 1) microclimate 2) magnitude and mechanisms of changes in carbon storage 3) marsh vegetation regeneration and 4) habitat use by birds.

This talk will 1) outline changes in mangrove cover in coastal wetlands particularly in the US Gulf Coast, 2) utilize the literature of woody encroachment to expand understanding of functional implications of vegetation change in coastal wetlands, and 3) introduce our upcoming paper and additional findings highlighting the functional impacts of coastal wetland vegetation change.

Presenter Bio

Sean Charles is a PhD candidate at Florida International University (Major Professor Dr. John Kominoski). Sean is interested in how global and local anthropogenic impacts alter wetland ecosystem functions, services and vulnerability. Sean is currently investigating the ways that biogeochemical changes associated with sea-level rise and vegetation shifts caused by global climate change alter carbon storage and vulnerability in coastal wetlands, both in the Florida Everglades and in Coastal Texas. Sean is an active member of SWS, and is currently the student representative for the Education and Outreach and Wetland Ambassador committees.

Sean holds a master’s degree from the Virginia Institute of Marine Science (Major Professor Dr. Jim Perry), during which he looked at the development of functions in created forested wetlands and analyzed their success in the mitigation process.

This webinar will cover research conducted in coastal Texas with Principal Investigator Dr. Steve Pennings (University of Houston) and co-PIs Dr. Anna Armitage (Texas A & M Galveston) and Dr. John Kominoski (Florida International University).

 

Members please log in to watch recording

Click here to enjoy SWS member benefits